On Projective Equivalence of Univariate Polynomial Subspaces
نویسندگان
چکیده
We pose and solve the equivalence problem for subspaces of Pn, the (n+ 1) dimensional vector space of univariate polynomials of degree ≤ n. The group of interest is SL2 acting by projective transformations on the Grassmannian variety GkPn of k-dimensional subspaces. We establish the equivariance of the Wronski map and use this map to reduce the subspace equivalence problem to the equivalence problem for binary forms.
منابع مشابه
ar X iv : 0 90 2 . 11 06 v 3 [ m at h . Q A ] 5 J un 2 00 9 ON PROJECTIVE EQUIVALENCE OF UNIVARIATE
We pose and solve the equivalence problem for subspaces of Pn, the (n + 1) dimensional vector space of univariate polynomials of degree ≤ n. The group of interest is SL2 acting by projective transformations on the Grassmannian variety GkPn of k-dimensional subspaces. We establish the equivariance of the Wronski map and use this map to reduce the subspace equivalence problem to the equivalence p...
متن کاملar X iv : 0 90 2 . 11 06 v 2 [ m at h . Q A ] 2 A pr 2 00 9 ON PROJECTIVE EQUIVALENCE OF UNIVARIATE
We pose and solve the equivalence problem for subspaces of Pn, the n + 1 dimensional vector space of univariate polynomials of degree ≤ n. The group of interest is PSL2 acting by projective transformations on the grassmannian variety GkPn of k-dimensional subspaces. We establish the equivariance of the Wronski map and use this map to reduce the subspace equivalence problem to the equivalence pr...
متن کاملPropositional systems, Hilbert lattices and generalized Hilbert spaces
With this chapter we provide a compact yet complete survey of two most remarkable “representation theorems”: every arguesian projective geometry is represented by an essentially unique vector space, and every arguesian Hilbert geometry is represented by an essentially unique generalized Hilbert space. C. Piron’s original representation theorem for propositional systems is then a corollary: it s...
متن کاملAn extension of Bochner's problem: Exceptional invariant subspaces
A classical result due to Bochner characterizes the classical orthogonal polynomial systems as solutions of a secondorder eigenvalue equation. We extend Bochner’s result by dropping the assumption that the first element of the orthogonal polynomial sequence be a constant. This approach gives rise to new families of complete orthogonal polynomial systems that arise as solutions of second-order e...
متن کاملProjective invariants of vector configurations
We investigate the Zariski closure of the projective equivalence class of a matrix. New results are presented regarding the matrices in this variety and their matroids, and we give equations for the variety. We also discuss the K-polynomial of the closure of a projective equivalence class, and two other geometric invariants that can be obtained from this. Résumé. Nous enquêtons sur l’adhérence ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009